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Abstract

Transient free convection in a two-dimensional square cavity filled with a porous medium is numerically studied in

this paper. The left vertical wall is suddenly heated to a constant temperature Th, while the right wall is suddenly cooled

to a constant temperature Tc by equal amount relative to an initially uniform temperature distribution. Both the

horizontal walls are adiabatic. The finite volume numerical method is used to solve the non-dimensional governing

equations. The results are obtained for the initial transient state up to the steady state, and for Rayleigh number values

of 102–104. It is observed that the average Nusselt number showing an undershoot during the transient period and that

the time required to reach the steady state is longer for low Rayleigh number and shorter for high Rayleigh number.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Convective heat transfer in fluid-saturated porous

media has received considerable attention over the last

several decades. This interest was estimated due to many

applications in, for example, packed sphere beds, high

performance insulation for buildings, chemical catalytic

reactors, grain storage and such geophysical problems as

frost heave. Porous media are also of interest in relation

to the underground spread of pollutants, solar power

collectors, and to geothermal energy systems. Literature

concerning convective flow in porous media is abundant.

Representative studies in this area may be found in the

recent books by Ingham and Pop [1], Nield and Bejan

[2], Vafai [3], Pop and Ingham [4], and Bejan and Kraus

[5].

Free convection in a cavity filled with a fluid-satu-

rated porous medium is of prime importance in many

technological applications. Examples are post-accident

heat removal in nuclear reactors and geophysical prob-
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lems associated with the underground storage of nuclear

waste, among others. The problem of free convection in a

rectangular porous cavity whose four walls are main-

tained at different temperatures or heat fluxes is one of

the classical problems in porous media, which has been

extensively studied. Much research work, both theoreti-

cal and experimental, has been done on this type of

convective heat transfer processes. A good deal of ref-

erences on this problem has been presented in the paper

by Lauriat and Prasad [6], and in the recent paper by

Baytas and Pop [7]. The model commonly used consists

of a porous cavity with both the vertical walls maintained

at constant temperatures, while the horizontal walls are

adiabatic. The flow and heat transfer characteristics of

the steady-state flow is generally studied for this type of

cavity. However, a very little work has been done for the

case of unsteady and transient flow situations.

The aim of this paper is to study numerically the

problem of transient free convection in a square cavity

filled with a porous medium when one of its vertical wall

is suddenly heated and the other wall is suddenly cooled,

while the horizontal walls are adiabatic. To our best

knowledge, only Banu et al. [8] have presented a study of

such a problem, but for a heat-generating porous cavity

with all four walls maintained at a constant temperature.
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Nomenclature

g gravitational acceleration

K permeability of the porous medium

L cavity height/width

Nu local Nusselt number

Ra Rayleigh number for porous medium

t time

T fluid temperature

u, v velocity components along x- and y-axes,
respectively

U , V non-dimensional velocity components along

X - and Y -axes, respectively
x, y Cartesian coordinates

X , Y non-dimensional Cartesian coordinates

Greek symbols

a effective thermal diffusivity

b coefficient of thermal expansion

h non-dimensional temperature

m kinematic viscosity

r ratio of composite material heat capacity to

convective fluid heat capacity

s non-dimensional time

w stream function

W non-dimensional stream function
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2. Basic equations

A schematic diagram of a two-dimensional square

cavity is shown in Fig. 1. It is assumed that the left

vertical wall of the cavity is suddenly heated to the

constant temperature Th and the right vertical wall is

suddenly cooled to the constant temperature Tc, where
Th > Tc, by equal amount relative to an initially uniform

temperature distribution, while the horizontal walls are

adiabatic.

In the porous medium, Darcy’s law is assumed to

hold, and the fluid is assumed to be a normal Boussinesq

fluid. The viscous drag and inertia terms in the govern-

ing equations are neglected, which are valid assumptions

for low Darcy and particle Reynolds numbers. With

these assumptions, the continuity, Darcy and energy
adiabatic wall

Th Tc

g

x,u

Fig. 1. Schematic diagram of the physical model and coordi-

nate system.
equations for unsteady, two-dimensional flow in an

isotropic and homogeneous porous medium are
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where u, v are the velocity components along x- and y-
axes, T is the fluid temperature and the physical meaning

of the other quantities are mentioned in the Nomen-

clature. The above equations are subjected to the fol-

lowing initial and boundary conditions:

uðx; y; 0Þ ¼ vðx; y; 0Þ ¼ 0; T ðx; y; 0Þ ¼ T0 ð4aÞ

uð0; y; tÞ ¼ vð0; y; tÞ ¼ 0; T ð0; y; tÞ ¼ Th ð4bÞ

uðL; y; tÞ ¼ vðL; y; tÞ ¼ 0; T ðL; y; tÞ ¼ Tc ð4cÞ

uðx; 0; tÞ ¼ vðx; 0; tÞ ¼ 0; oT ðx; 0; tÞ=oy ¼ 0 ð4dÞ

uðx; L; tÞ ¼ vðx; L; tÞ ¼ 0; oT ðx; L; tÞ=oy ¼ 0 ð4eÞ

where T0 ¼ ðTh þ TcÞ=2. Eqs. (1)–(3) can be written in

terms of the stream function w defined as u ¼ ow=oy and
v ¼ �ow=ox together with the following non-dimen-

sional variables:

X ¼ x
L
; Y ¼ y

L
; s ¼ at

rL2
; h ¼ T � T0

Th � Tc
;

W ¼ w
a

ð5Þ

The non-dimensional forms of the governing Eqs. (1)–

(3) are:
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where Ra is the Rayleigh number defined as: Ra ¼
gbKDTL=ma, and the initial and boundary conditions (4)

become

WðX ; Y ; 0Þ ¼ 0; hðx; y; 0Þ ¼ 0 ð8aÞ

Wð0; Y ; sÞ ¼ 0; hð0; Y ; sÞ ¼ 0:5 ð8bÞ

Wð1; Y ; sÞ ¼ 0; hð1; Y ; sÞ ¼ �0:5 ð8cÞ

WðX ; 0; sÞ ¼ 0; ohðX ; 0; sÞ=oY ¼ 0 ð8dÞ

WðX ; 1; sÞ ¼ 0; ohðX ; 1; sÞ=oY ¼ 0 ð8eÞ

The physical quantities of interest in this problem are

the local Nusselt number along the hot wall, defined by

Nu ¼
�
� oh
oX

�
X¼0

ð9Þ

and also the average Nusselt number, which is defined as

Nu ¼
Z 1

0

NudY ð10Þ
3. Numerical method

Eqs. (6) and (7) subject to the boundary conditions

(8) are integrated over a control volume using the fully

implicit scheme which is unconditionally stable. The

power-law scheme is used for the convection–diffusion

formulation as describe by Patankar [9]. The solution

domain, therefore, consists of grid points at which the

discretization equations are applied. In this domain X an

Y , by definition varies from 0 to 1, non-uniform grid has

been selected in both X and Y directions such that the

grid points clustered near the walls. The grid size and

geometry were tested, and it was found that the fol-

lowing size and geometry give the best results comparing

with the results in the literature for the steady-state flow:

the grid size is (41 · 41) and the grid geometry is sym-

metrical about the centerlines. The grid points on the

left-hand side from the vertical centerline are defined as

X ðiÞ ¼ 1

2

i� 1

Ncl � 1

� �1:2

; i ¼ 1; 2; . . . ;Ncl ð11aÞ

where Ncl is the centerline grid point index (Ncl ¼ 21) and

X ðNclÞ ¼ 1=2. The grid spacing can be calculated from

DX ðiÞ ¼ X ðiþ 1Þ � X ðiÞ; i ¼ 1; 2; . . . ; ðNcl � 1Þ ð11bÞ

The grid spacing in the right hand side from the cen-

terline is calculated from the similarity
DX ðN � iÞ ¼ DX ðiÞ; i ¼ 1; 2; . . . ; ðNcl � 1Þ ð11cÞ

Finally, the grid points on the right hand side from the

centerline are calculated as

X ðiþ 1Þ ¼ X ðiÞ þ DX ðiÞ;
i ¼ Ncl;Ncl þ 1; . . . ; ðN � 1Þ ð11dÞ

The same method is used to define and stretch the grid in

the Y direction. The time step is chosen to be uniform

Ds ¼ 10�4, which has been used also by Baytas and Pop

[7]. The resulting algebraic equations were solved by

line-by-line iteration using Tri-Diagonal Matrix Algo-

rithm. The iteration process is terminated under the

following condition

X
i;j

j/n
i;j � /n�1

i;j j
,X

i;j

j/n
i;jj6 10�5 ð12Þ

where / stands for h and W; n denotes the iteration step.
4. Results and discussion

The streamlines and isotherms at different time steps

ranging from s ¼ 0:0025 to s ¼ 0:08 are shown in Fig. 2

for Ra ¼ 1000. It can be seen that early in the transient,

the isotherms are nearly parallel indicating conduction

heat transfer and the fluid is rising up near the hot left

wall and is fallen downward near the cooled right wall,

respectively. A recirculation flow region of small inten-

sity sites close to the upper part of the hot wall or to the

lower part of the cooled wall and spin the fluid towards

the center of the enclosure (Fig. 2a). Shortly after that,

the fluid travels across the upper (or lower) half of the

enclosure (Fig. 2b). The streamlines indicate an elon-

gation of the recirculating region of the flow along with

a transition to the middle of the enclosure (Fig. 2b).

With increasing of time (s ¼ 0:01), the majority of fluid

is rising up or falling down near the hot wall and near

the cooled wall, respectively (Fig. 2c) and the local

Nusselt number is continuously decreasing near the

upper part of the hot wall (Fig. 3b). Further, after a

short time (s ¼ 0:02), the flow has been extended

throughout the cavity and convection has became more

important (Fig. 2d). For s > 0:04 the flow is then going

to attain the steady-state regime (Fig. 2e), which hap-

pens for s ¼ 0:08 (Fig. 2f). The streamlines and the

isotherms at s ¼ 0:08 presented in Fig. 2f are almost

identical to those given by Baytas and Pop [7], and

Baytas [10]. The development of the velocity and ther-

mal boundary layers on the vertical walls of the cavity

can be clearly observed from these figures, which con-

tinuously grow to the steady-state thermal boundary

layers flow. The development of the velocity and thermal

boundary layers for Ra ¼ 102 and 104 are similar to
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Fig. 2. Stream lines (left) and isotherms (right) for Ra ¼ 1000; (a) and s ¼ 0:0025, (b) and s ¼ 0:005, (c) and s ¼ 0:01, (d) and s ¼ 0:02,

(e) and s ¼ 0:04 and (f) and s ¼ 0:08.
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those shown in Fig. 2. The difference is that for low

Rayleigh number condition the convection currents will

be weaker which leads to the grow of the boundary layer
will be slower than for high Rayleigh number condition.

The stream lines and the isotherms for Ra ¼ 102 and 104

are not shown for brevity.
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Fig. 2 (continued)
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The variation of the transient local Nusselt number

with time s along the hot wall of the cavity at different

positions Y is presented in Fig. 3 for Ra ¼ 102–104. It is
seen that immediately after the process of impulsively

heating starts the value of the local Nusselt number goes

to infinity (is singular) and this is characteristic to any
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impulsively started heating system. Then, at small

positions (Y < 0:5), the local Nusselt number decreases

for a short time followed by a constant value and then

increase to reach the steady state value. Fig. 3c shows

that this phenomenon will happen for the upper half

also (Y P 0:5) for Ra ¼ 104. However, for Y P 0:5 and

Ra ¼ 102 and 103 the local Nusselt number decreases

continuously with increasing the time until it reaches its

steady-state value. This variation of the transient local

Nusselt number is reflected on the average Nusselt

number which is defined in Eq. (10). Fig. 4 shows the
0 0.02 0.04
0.1

1

10

100

0
0.1

1

10

100

0 0.0025 0.0
10

100

1.103

Nu

Y=0.0724 0.2708 0.5

Y=0.0724 0.2708 0.5

Y=0.0724 0.2708

(a) 

(b) 

(c) 

Nu

Nu

0.01 0.0

Fig. 3. Variation of the transient local Nusselt number with s at d

Ra ¼ 10000.
variation of the average Nusselt number with the non-

dimensional time for different Rayleigh numbers. The

average Nusselt number showing an undershoot during

the transient period followed by a constant steady state

value for all Ra ¼ 102–104. It is also observed that the

time required to reach the steady state (Nu becomes

constant) is longer for low Rayleigh number and shorter

for high Rayleigh number as shown in Figs. 3 and 4.

Further, values of the average Nusselt number along

the hot wall of the cavity at the steady-state flow for

Ra ¼ 102–104 are given in Table 1. It is seen again that
0.06 0.08 0.1
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0.7291 0.9275

0.5 0.7291 0.9275

τ
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ifferent Rayleigh number: (a) Ra ¼ 100, (b) Ra ¼ 1000 and (c)
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Fig. 4. Variation of the transient average Nusselt number with s at different Rayleigh number.

Table 1

Comparison of Nu at steady state with some previous numerical results

Author Nu

Ra ¼ 100 Ra ¼ 1000 Ra ¼ 10; 000

Walker and Homsy [11] 3.097 12.960 51.000

Bejan [12] 4.200 15.800 50.800

Gross et al. [13] 3.141 13.448 42.583

Manole and Lage [14] 3.118 13.637 48.117

Baytas [10] 3.160 14.060 48.330

Present results 3.002 13.726 43.953
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the present values of Nu are in very good agreement with

that obtained by different authors, such as Walker and

Homsy [11], Bejan [12], Gross et al. [13], andManole and

Lage [14]. Therefore, these results provide great confi-

dence to the accuracy of the present numerical model.

It is important to recall that the above results were

obtained using the thermal equilibrium between the

solid and fluid phases in the porous media assuming low

Reynolds number and low porosity. The effect of the

non-equilibrium is usually considered for higher fluid

velocity as well as higher porosity which need further

investigation as extension to the present research.
5. Conclusions

The transient free convection in a two-dimensional

square cavity filled with a porous medium is considered

in this paper. The flow is driven by considering the case

when one of the cavity vertical walls is suddenly heated

and the other vertical wall is suddenly cooled, while the

horizontal walls are adiabatic. The non-dimensional

forms of the continuity, Darcy and energy equations are

solved numerically. The power-law scheme is used for

the convection–diffusion formulation in the non-uni-

form grid in both horizontal and vertical directions. It is

observed during the transient period the average Nusselt

number showing an undershoot followed by a constant
steady state value for all Ra ¼ 102–104 and at the steady

state the flow and heat transfer characteristics are simi-

lar to those from the open literature. It is also observed

that the time required to reach the steady state is longer

for low Rayleigh number and shorter for high Rayleigh

number.
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